Model of neural circuit comparing static and adaptive synapses.
نویسندگان
چکیده
Replacing static synapses with the adaptive ones can affect the behaviour of neuronal network. Several network setups containing synapses modelled by alpha-functions, called here static synapses, are compared with corresponding setups containing more complex, dynamic synapses. The dynamic synapses have four state variables and the time constants are of different orders of magnitude. Response of the network to modelled stimulations was studied together with effects of neuronal interconnectivity, the axonal delays and the proportion of excitatory and inhibitory neurons on the network output. Dependency of synaptic strength on synaptic activity was also studied. We found that dynamic synapses enable network to exhibit broader spectrum of responses to given input and they make the network more sensitive to changes of network parameters. As a step towards memory modelling, retention of input sequences in the network with static and dynamic synapses was studied. The network with dynamic synapses was found to be more flexible in reducing the interference between adjacent inputs in comparison to the network containing static synapses.
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملTransresistance CMOS neuron for adaptive neural networks implemented in hardware
A simple analog circuit is presented which can play a neuron role in static-model-based neural networks implemented in the form of an integrated circuit. Operating in a transresistance mode it is suited to cooperate with transconductance synapses. As a result, its input signal is a current which is a sum of currents coming from the synapses. Summation of the currents is realized in a node at th...
متن کاملDynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملReconstruction of the neural network model of motor control for virtual C.elegans on the basis of actual organism information
Introduction: C. elegans neural network is a good sample for neural networks studies, because its structural details are completely determined. In this study, the virtual neural network of this worm that was proposed by Suzuki et al. for control of movement was reconstructed by adding newly discovered synapses for each of these network neurons. These synapses are newly discovered in the actu...
متن کاملSpeed Observer Design for Linear Induction Motor Drives
In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Prague medical report
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2004